
Dmitry Chadayev

Sr. Program Manager
Microsoft Dynamics NAV

August 2014

Design Insights

we have introduced a new way of running the data upgrade logic which migrates data from the old
table structure of the previous version of the product to the new table structure of the new version.

The data upgrade is now prepared and run with the help of specially prepared object – the upgrade
codeunit. The data upgrade was enhanced significantly to optimize the performance and provide
developers with a superior tool for testing, automating, tracking progress and troubleshooting of the
data upgrade code.

1

2

3

4

nnnnnn

nnnn

nnnnnn

nnnnn

n

nn

n

nnn

nn

n

n

n

1

2

3

4

nnnnnn

nnnn

nnnnnn

nnnnn

n

nn

n

nnn

nn

n

n

n

Open Company A

Upgrade Function 1 Upgrade Function 2 Upgrade Function ... Upgrade Function n

Open Company B

Upgrade Function 1 Upgrade Function 2 Upgrade Function ... Upgrade Function n

Open Company ...

Upgrade Function 1 Upgrade Function 2 Upgrade Function ... Upgrade Function n

Repeat for Upgrade Toolkit Step 1
and

Upgrade Toolkit Step 2

Open Company A Upgrade Function 1 Upgrade Function 2 Upgrade Function ... Upgrade Function n Open Company B Upgrade Function 1 Upgrade Function 2 Upgrade Function ... Upgrade Function n Open Company ... Upgrade Function 1 Upgrade Function 2 Upgrade Function ... Upgrade Function n Open Company A Upgrade Function 1 Upgrade Function 2 Upgrade Function ... Upgrade Function n Open Company B Upgrade Function 1 Upgrade Function 2 Upgrade Function ... Upgrade Function n Open Company ... Upgrade Function 1 Upgrade Function 2 Upgrade Function ... Upgrade Function n

Open Company A

Upgrade Function 1 Upgrade Function 2 Upgrade Function ... Upgrade Function n

Open Company B

Upgrade Function 1 Upgrade Function 2 Upgrade Function ... Upgrade Function n

Open Company ...

Upgrade Function 1 Upgrade Function 2 Upgrade Function ... Upgrade Function n

Upgrade Toolkit Step 1 Upgrade Toolkit Step 2

Open Company A

Upgrade Function 1 Upgrade Function 2 Upgrade Function ... Upgrade Function n

Open Company B

Upgrade Function 1 Upgrade Function 2 Upgrade Function ... Upgrade Function n

Open Company ...

Upgrade Function 1 Upgrade Function 2 Upgrade Function ... Upgrade Function n

+ =

Upgrade Function 1 = Assume it can run
for a few minutes to a

few hours…

Open Company A Upgrade Function 1 Upgrade Function 2 Upgrade Function ... Upgrade Function n Open Company B Upgrade Function 1 Upgrade Function 2 Upgrade Function ... Upgrade Function n Open Company ... Upgrade Function 1 Upgrade Function 2 Upgrade Function ... Upgrade Function n Open Company A Upgrade Function 1 Upgrade Function 2 Upgrade Function ... Upgrade Function n Open Company B Upgrade Function 1 Upgrade Function 2 Upgrade Function ... Upgrade Function n Open Company ... Upgrade Function 1 Upgrade Function 2 Upgrade Function ... Upgrade Function n

x

If you get an
error here …

You have to fix it and
come back here …

.. or even
here …

Re-run all
this…

And HOPE you
don’t get a new

error here…

Upgrade
700800.fob

Upgrade
701800.fob

Upgrade
Codeunit

Upgrade
Table(s)

Upgrade
Codeunit

Upgrade
Table(s)

Step 1

Step 2

Upgrade
Codeunit

Compiled by Microsoft Dynamics NAV 2015 version (8.0)

*

*

*

* Upgrade codeunits cannot be run directly. They
can only be invoked by Microsoft NAV Server

Copy or move data from the
obsolete/changed tables and

fields into upgrade tables
or force-delete them if data is

not needed.
(previously known as

UPGTK Step 1)

Check upgrade
preconditions

Run custom data upgrade
code, process and move

the data from the upgrade
tables to the new tables.

(previously known as
UPGTK Step 2)

Upgrade Toolkit Step 1 is
“outsourced” to the NAV server.
The server executes it during the

table schema synchronization.

Both steps now reside within a
single upgrade codeunit and are

executed by the latest version of
the product.

App*

NAV

Server

Development

Environment

Virtual Table
2000000135
Table Synch. Setup,
containing IDs of all
tables with schema
changes

Table ID Upgrade Table ID Mode

3

23

25

167

445

Modify

Table ID Upgrade Table ID Mode

3 170001 Copy

23 170002 Copy

25 170003 Copy

167 170004 Move

445 0 Force

Discover

Changes

Fill-in

Fill-in

Synchronize

Schema

App*

DataData

By comparing the content
of the Object Metadata
and Object Metadata
Snapshot system tables

Apply changes to the
SQL table

Can the changes
be applied

without
deleting data?

Yes

Error

No

Success

Rename the original
table into the upgrade

table (preserving all
data)

Create the new table
and leave it empty

Copy the data from the
changed/removed
columns into the

upgrade table

Apply changes to the
SQL table

Delete data in the
changed/removed

columns

Apply changes to the
SQL table

Open Company A Upgrade Function 1 Upgrade Function 2 Upgrade Function ... Upgrade Function n Open Company B Upgrade Function 1 Upgrade Function 2 Upgrade Function ... Upgrade Function n Open Company ... Upgrade Function 1 Upgrade Function 2 Upgrade Function ... Upgrade Function n Open Company A Upgrade Function 1 Upgrade Function 2 Upgrade Function ... Upgrade Function n Open Company B Upgrade Function 1 Upgrade Function 2 Upgrade Function ... Upgrade Function n Open Company ... Upgrade Function 1 Upgrade Function 2 Upgrade Function ... Upgrade Function n

Open

Company A
 Upgrade Function 1

 Check

 Preconditions

Open

Company B
Upgrade Function 1 Upgrade Function 2

 Check

 Preconditions
 Upgrade Function 2

Open

Company A

 Upgrade Function 1

 Check

 Preconditions

Open

Company B

 Upgrade Function 1

 Upgrade Function 2

 Check

 Preconditions

 Upgrade Function 2

Done!

Done! Each upgrade function runs in its
own system session.

We have preserved the ability to
run the upgrade functions

sequentially (for example, in cases
where they lock each other).

Data upgrade is an asynchronous
process, therefore you can start it

for multiple tenants in parallel too.

Upgrade functions should be built
so that they are:

• independent of each other
• not locking each other
• not expecting any particular

order of execution

If these conditions cannot be
met, you can mark the related (for
example, the ones locking each
other) and order-dependent
functions as [Normal] and then call
them from an upgrade function.

 Upgrade Function 1

 Upgrade Function 1

 Upgrade Function 2

 Upgrade Function 2

When errors occur in one of the
functions:

• the functions which are already
completed, will remain
completed

• the function which is failed and
the functions which were in
progress are rolled back and set
to a “pending” state

Once the error is fixed, you can
resume the upgrade process by
restarting the “pending” functions.

You can choose to restart a
particular function from a
particular codeunit for a
particular company.

 Upgrade Function 1

 Upgrade Function 1

 Upgrade Function 2

 Upgrade Function 2

You can decide if you want to
stop the upgrade on the first
error, or let the other upgrade
functions continue and display
all errors at the end.

You can observe the progress
and get a complete overview
of the execution results during
and after upgrade.

Get-NAVDataUpgrade –Details | ogv

You can request the state of
the upgrade progress
periodically, observing

which functions are being
executed, which are

completed or failed to
complete...

Get-NAVDataUpgrade –Progress

… Or you can observe the
upgrade progress in real-

time.

Run

Example.ps1 *
Install Microsoft

Dynamics NAV 2015

Fill in the

parameters in

Set-

PartnerSettings

.ps1

* If you run it in Windows PowerShell ISE, remember to import the NAVAdminTools module:

Import-Module “C:\Program Files\Microsoft Dynamics NAV\80\Service\NavAdminTool.ps1”

The new approach:

• Simplifies the upgrade environment because all steps are performed by the
latest version of the product.

• Increases the data upgrade performance because it is possible to execute the
data upgrade functions in parallel within the upgrade codeunit and across
companies.

• Reduces the amount of code to be written to handle the data upgrade because
some actions are now executed automatically by Microsoft Dynamics NAV Server.

• Minimizes the number of manual actions which should be performed during the
data upgrade, making the data upgrade process less error-prone.

• Uses familiar upgrade toolkit design concepts (such as upgrade tables, upgrade
functions).

• End-to-end sample PowerShell script for performing data upgrade (on the DVD).

On this page you will have access to resources for developers, consultants, sales and business decision
makers. For more detailed information please visit our readiness library, which includes a variety of
materials such as how-to videos, demo scripts, white papers and slide decks.

http://go.microsoft.com/fwlink/?LinkID=510890

http://go.microsoft.com/fwlink/?LinkID=510890

